Ancestry of Three Major Animal Groups Revealed by 518-Million-Year-Old Armored Worm

0
210
Wufengella

Revealed: The Secrets our Clients Used to Earn $3 Billion

A reconstruction of how Wufengella would have regarded like in life. Credit: Illustration made by Roberts Nicholls, Paleocreations.com

A well-preserved fossilized worm courting from 518-million-years-ago resembles the ancestor of three main teams of residing animals.

An worldwide group of scientists has found {that a} well-preserved fossilized worm courting from 518-million-years-ago resembles the ancestor of three main teams of residing animals. The analysis group included scientists from the University of Bristol, the University of Oxford, and the Natural History Museum.

Named Wufengella and unearthed in China, the fossil worm measures about half an inch lengthy. It was a stubby creature lined in a dense, commonly overlapping array of plates on its again. It belongs to an extinct group of shelly organisms known as tommotiids.

Surrounding the asymmetrical armor of the worm was a fleshy physique with a collection of flattened lobes projecting from the edges. In between the lobes and the armor, bundles of bristles emerged from the physique. The many lobes, bundles of bristles, and the array of shells on the again are proof that the worm was initially serialized or segmented, like an earthworm.

The findings have been revealed within the journal Current Biology on September 27. Study co-author, Dr. Jakob Vinther from the University of Bristol’s School of Earth Sciences, said: “It looks like the unlikely offspring between a bristle worm and a chiton mollusk. Interestingly, it belongs to neither of those groups.”

Wufengella Fossil

The fossil Wufengella and a drawing outlining the major components of the organism. Credit: Jakob Vinther and Luke Parry

The animal kingdom consists of more than 30 major body plans categorized as phyla. Each phylum contains a unique set of features that set them apart from one another. Only a few features are shared across more than one group, which is a testament to the very fast rate of evolution during which these major groups of animals originated. This was during a period called the Cambrian Explosion, approximately 550 million years ago.

Brachiopods are a phylum that superficially resembles bivalves (such as clams) in that they have a pair of shells and live attached to the seafloor, rocks, or reefs. However, when looking inside, brachiopods reveal themselves to be significantly different in many respects. In fact, brachiopods filter water using a pair of tentacles folded up into a horseshoe-shaped organ.

Such an organ is called a lophophore and brachiopods share the it with two other major groups called the phoronids (“horseshoe worms”) and bryozoans (“moss animals”). Molecular studies – which reconstruct evolutionary trees using amino acid sequences – agree with anatomical evidence that brachiopods, bryozoans, and phoronids are each other’s closest living relatives. This is a group called Lophophorata after their filter-feeding organ.

Tommotiids Evolution Schematic

A schematic outline of how tommotiids tell us about the evolution of body plans across the tree of Life. Credit: Luke Parry

Co-author Dr. Luke Parry from the University of Oxford added: “Wufengella belongs to a group of Cambrian fossils that’s crucial for understanding how lophophorates evolved. They’re called tommotiids, and thanks to these fossils we have been able to understand how brachiopods evolved to have two shells from ancestors with many shell-like plates arranged into a cone or tube.

“We have known for a long time about this tommotiid group called camenellans. Paleontologists have thought that those shells were attached to an agile organism—crawling around—rather than being fixed in one place and feeding with a lophophore.”

The team, which consists of paleontologists from the University of Bristol, Yunnan University, the Chengjiang Museum of Natural History, University of Oxford, the Natural History Museum in London, and the Muséum national d’Histoire Naturelle in Paris, demonstrate that Wufengella is a complete camenellan tommotiid. This means that it reveals what the long sought-after wormy ancestor to lophophorates looked like.

Dr. Parry added: “When it first became clear to me what this fossil was that I was looking at under the microscope, I couldn’t believe my eyes. This is a fossil that we have often speculated about and hoped we would one day lay eyes on.”

While the fossil fulfills the palaeontological prediction that the lophophorates’ ancestral lineage was an agile, armored worm, the appearance of its soft anatomy brings into focus some hypotheses about how lophophorates may be related to segmented worms.

Dr. Vinther said: “Biologists had long noted how brachiopods have multiple, paired body cavities, unique kidney structures, and bundles of bristles on their back as larvae. These similarities led them to notice how closely brachiopods resemble annelid worms.”

“We now can see that those similarities are reflections of shared ancestry. The common ancestor of lophophorates and annelids had an anatomy most closely resembling the annelids.

“At some point, the tommotiid ancestor to the lophophorates became sessile and evolved suspension feeding (catching particles suspended in the water). Then a long, wormy body with numerous, repeated body units became less useful and was reduced.”

Co-author Greg Edgecombe from the Natural History Museum said: “This discovery highlights how important fossils can be for reconstructing evolution.

“We get an incomplete picture by only looking at living animals, with the relatively few anatomical characters that are shared between different phyla. With fossils like Wufengella, we can trace each lineage back to its roots, realizing how they once looked altogether different and had very different modes of life, sometimes unique and sometimes shared with more distant relatives.”

Reference: “A Cambrian tommotiid preserving soft tissues reveals the metameric ancestry of lophophorates” by Jin Guo, Luke A. Parry, Jakob Vinther, Gregory D. Edgecombe, Fan Wei, Jun Zhao, Yang Zhao, Olivier Béthoux, Xiangtong Lei, Ailin Chen, Xianguang Hou, Taimin Chen and Peiyun Cong, 27 September 2022, Current Biology.
DOI: 10.1016/j.cub.2022.09.011



This site uses Akismet to reduce spam. Learn how your comment data is processed.