How Earth Transformed Itself From a Fiery Ball to a Habitable Planet

Early Earth Artist’s Conception

Revealed: The Secrets our Clients Used to Earn $3 Billion

An artist’s conception of the early Earth. Credit: Simone Marchi/SwRI

Researchers at Yale and Caltech have a daring new principle to clarify how Earth remodeled itself from a fiery, carbon-clouded ball of rocks right into a planet able to sustaining life.

The principle covers Earth’s earliest years and entails “weird” rocks that interacted with seawater in simply the appropriate technique to nudge organic matter into existence.

This period is the most enigmatic time in Earth history,” mentioned Jun Korenaga, a professor of Earth and planetary sciences at Yale and co-author of a brand new research within the journal Nature. “We’re presenting the most complete theory, by far, for Earth’s first 500 million years.”

The research’s first writer is Yoshinori Miyazaki, a former Yale graduate scholar who’s now a Stanback Postdoctoral Fellow at Caltech. The research relies on the ultimate chapter of Miyazaki’s Yale dissertation.

Most scientists imagine that Earth started with an environment very like that of the planet Venus. Its skies were filled with carbon dioxide — more than 100,000 times the current level of atmospheric carbon — and Earth’s surface temperature would have exceeded 400 degrees Fahrenheit.

Biological life would have been unable to form, much less survive, under such conditions, scientists agree.

Early Earth Illustration

Artist’s conception of the early Earth. Credit: Simone Marchi, Southwest Research Institute

Somehow, a massive amount of atmospheric carbon had to be removed,” Miyazaki said. “Because there is no rock record preserved from the early Earth, we set out to build a theoretical model for the very early Earth from scratch.”

Miyazaki and Korenaga combined aspects of thermodynamics, fluid mechanics, and atmospheric physics to build their model. Eventually, they settled on a pretty bold proposition: early Earth was covered with rocks that do not currently exist on Earth.

These rocks would have been enriched in a mineral called pyroxene, and they likely had a dark greenish color,” Miyazaki said. “More importantly, they were extremely enriched in magnesium, with a concentration level seldom observed in present-day rocks.”

Miyazaki said magnesium-rich minerals react with carbon dioxide to produce carbonates, thereby playing a key role in sequestering atmospheric carbon.

The researchers suggest that as the molten Earth started to solidify, its hydrated, wet mantle — the planet’s 3,000-kilometer-thick rocky layer — convected vigorously. The combination of a wet mantle and high-magnesium pyroxenites dramatically sped up the process of pulling CO2 out of the atmosphere.

In fact, the researchers said the rate of atmospheric carbon sequestration would have been more than 10 times faster than would be possible with a mantle of modern-day rocks, requiring a mere 160 million years.

As an added bonus, these ‘weird’ rocks on the early Earth would readily react with seawater to generate a large flux of hydrogen, which is widely believed to be essential for the creation of biomolecules,” Korenaga said.

The effect would be similar to a rare type of modern, deep-sea thermal vent, called the Lost City hydrothermal field, located in the Atlantic Ocean. The Lost City hydrothermal field’s abiotic production of hydrogen and methane has made it a prime location for investigating the origin of life on Earth.

Our theory has the potential to address not just how Earth became habitable, but also why life emerged on it,” Korenaga added.

Grants from the National Aeronautics and Space Administration and the National Science Foundation helped to fund the research.