Sugar Is Processed Differently within the Brains of Obesity-Prone

0
182
Sugar Written

Revealed: The Secrets our Clients Used to Earn $3 Billion

Researchers are investigating the position of the mind’s nucleus accumbens in driving overeating and weight problems. A latest research utilizing rat fashions discovered variations within the nucleus accumbens between obesity-prone and obesity-resistant rats, exhibiting that glucose took longer to enter the nucleus accumbens in obesity-prone animals. Furthermore, extra ranges of glutamate, an excitatory neurotransmitter, have been present in these rats, suggesting a defect in a neurotransmitter recycling course of. The researchers intention to discover the position of irritation within the improvement of weight problems and the way variations in mind operate contribute to susceptibility and resistance to weight problems.

Molecular insights level to neuronal underpinnings of weight problems.

Scientists learning the nucleus accumbens in rats discovered variations between obesity-prone and obesity-resistant animals, with the previous exhibiting delayed glucose entry and extra glutamate ranges. These findings recommend a defect in neurotransmitter recycling, and the analysis workforce plans to analyze the position of irritation in weight problems improvement.

On a weight loss program? Perhaps you’re avoiding sweets or carbs altogether or curbing late-night munchies. These are examples of conduct modifications and in relation to meals, avoiding these weight loss program triggers will be fairly onerous to do.

To perceive what drives folks to overeat, scientists are trying extra carefully at a mind construction concerned in motivation, referred to as the nucleus accumbens. This small area drives reward-seeking behaviors underlying the pursuit of intercourse, leisure medication like nicotine and alcohol, and meals.  

“These mind motivation facilities developed to assist us survive; discovering meals and having intercourse are important to the survival of a person and of a species,” said Carrie Ferrario, Ph.D., associate professor in the Department of Pharmacology at the University of Michigan Medical School. 

“What was advantageous when food was hard to find has become a disadvantage and unhealthy in the current food-dense environment. This is compounded by the overabundance of over-processed, low-nutrition foods that may satisfy our taste but leave our bodies unnourished. People don’t tend to find it difficult to turn down an extra serving of broccoli, but just one more french fry or making room for a bit of chocolate dessert…that’s a different story. The real challenge is overcoming these urges and changing our behavior when it comes to food,” Ferrario added. 

Given the immense toll obesity takes on virtually all body systems, Ferrario, Peter Vollbrecht, Ph.D., of Western Michigan University, and their colleagues are using rat models to understand potential brain differences between animals who are prone to over-eating and obesity and those who are not. 

Previous research from Ferrario’s lab pinpointed differences in the nucleus accumbens in obesity-prone and obesity-resistant rats. Their latest study, published in the Journal of Neurochemistry, tracked what was happening in real-time in the brain when these animals were presented with glucose, a type of sugar, labeled with a tracer. The tracer allowed the researchers to measure this new sugar in the brain. 

Sugar is the brain’s main fuel source and once there, the molecule is broken down and used to create new molecules such as glutamine, glutamate, and GABA, each with an important role in influencing the activation of neurons in the brain and nervous system.  

“Glucose that is consumed gets broken down and then its carbons get incorporated into neurotransmitters. We see those labeled carbons showing up in those molecules—glutamate, glutamine, and GABA—over time,” explained Vollbrecht.  

They found that glucose was taking longer to get into the nucleus accumbens of obesity-prone animals. 

Furthermore, when measuring the concentration of the glutamate, glutamine, and GABA, they discovered excess levels of glutamate, an excitatory neurotransmitter. This, said the team, implied a defect in a neurotransmitter recycling process, typically maintained in the nervous system by star-shaped cells called astrocytes. 

Normally, astrocytes will pull glutamate out of the space between neurons, called the synapse, convert it into glutamine, and then shuttle it back to cells that produce GABA or glutamate. This sequence is crucial for turning neurons off and on.  “The findings suggest that we’re getting too much glutamate and it’s not being taken out of the synapse,” said Vollbrecht.

Ferrario added, “The balance between glutamate and GABA (the main inhibitory transmitter) is really important for brain function and will influence activity of the neurons in the nucleus accumbens.”

This balance, and therefore brain activity, is different in obesity-prone vs. obesity-resistant rats. 

The fact that these rats are either prone to obesity or not is important for disentangling cause and effect, says Vollbrecht. “It allows us to remove diet as one of the variables.”  

The team hopes to next study the role of inflammation in the development of obesity, and how differences in brain function contribute to susceptibility and resistance to obesity. 

Reference: “Differential regulation of nucleus accumbens glutamate and GABA in obesity-prone and obesity-resistant rats” by Peter J. Vollbrecht, Kathryn M. Nesbitt, Victoria M. Addis, Keenan M. Boulnemour, Daniel A. Micheli, Kendall B. Smith, Darleen A. Sandoval, Robert T. Kennedy, Carrie R. Ferrario, 6 November 2022, The Journal of Neurochemistry
DOI: 10.1111/jnc.15720

Other authors on the paper include Kathryn M. Nesbitt, Victoria M. Addis, Keenan M. Boulnemour, Daniel A. Micheli, Kendall B. Smith, Darleen A. Sandoval, and Robert T. Kennedy.