Why facial acknowledgment’s racial predisposition issue is so difficult to fracture


Revealed: The Secrets our Clients Used to Earn $3 Billion

Matthias Graben/Getty Images

Jimmy Gomez is a California Democrat, a Harvard graduate and among the couple of Hispanic legislators serving in the United States House of Representatives.

But to Amazon’s facial acknowledgment system, he appears like a prospective bad guy.

Gomez was among 28 United States Congress members incorrectly matched with mugshots of individuals who have actually been apprehended, as part of a test the American Civil Liberties Union ran in 2015 of the Amazon Rekognition program.

Nearly 40 percent of the incorrect matches by Amazon’s tool, which is being utilized by authorities, included individuals of color.


This belongs to a CNET unique report checking out the advantages and risks of facial acknowledgment.

James Martin/CNET

The findings strengthen a growing issue amongst civil liberties groups, legislators and even some tech companies that facial acknowledgment might hurt minorities as the innovation ends up being more mainstream. A kind of the tech is currently being utilized on iPhones and Android phones, and authorities, merchants, airports and schools are gradually happening to it too. But research studies have actually revealed that facial acknowledgment systems have a more difficult time recognizing females and darker-skinned individuals, which might cause dreadful incorrect positives.

“This is an example of how the application of technology in the law enforcement space can cause harmful consequences for communities who are already overpoliced,” stated Jacob Snow, innovation and civil liberties lawyer for the ACLU of Northern California.

Facial acknowledgment has its advantages. Police in Maryland utilized the innovation to determine a suspect in a mass shooting at the Capital Gazette. In India, it’s assisted authorities determine almost 3,000 missing kids within 4 days. Facebook utilizes the innovation to determine individuals in pictures for the aesthetically impaired. It’s end up being a hassle-free method to open your mobile phone.

But the innovation isn’t ideal, and there have actually been some humiliating public mistakes. Google Photos as soon as identified 2 black individuals as gorillas. In China, a lady declared that her colleague had the ability to open her iPhone X utilizing Face ID. The stakes of being misidentified are increased when police utilize facial acknowledgment to determine suspects in a criminal activity or unmask individuals in a demonstration.

“When you’re offering [this technology] to police to identify if that person is desired for a criminal activity, that’s an entire various ballgame,” stated Gomez. “Now you’re creating a situation where mistaken identity can lead to a deadly interaction between law enforcement and that person.”

The legislator wasn’t surprised by the ACLU’s findings, keeping in mind that tech employees are frequently believing more about how to make something work and inadequate about how the tools they develop will affect minorities.

facial recogntion 1010

Now playing:
Watch this:

Facial recognition: Get to know the tech that gets to…


Tech companies have responded to the criticism by improving the data used to train their facial recognition systems, but like civil rights activists, they’re also calling for more government regulation to help safeguard the technology from being abused. One in two American adults is in a facial recognition network used by law enforcement, researchers at Georgetown Law School estimate.

Amazon pushed back against the ACLU study, arguing that the organization used the wrong settings when it ran the test.

“Machine learning is a very valuable tool to help law enforcement agencies, and while being concerned it’s applied correctly, we should not throw away the oven because the temperature could be set wrong and burn the pizza,” Matt Wood, general manager of artificial intelligence at Amazon Web Services, said in a blog post.

Recognition problem

There are various reasons why facial recognition services might have a harder time identifying minorities and women compared with white men.

Businessman using using face recognition outdoors

Facial recognition technology has a harder time identifying people with darker skin, studies show. 

Getty Images

Public photos that tech workers use to train computers to recognize faces could include more white people than minorities, said Clare Garvie, a senior associate at Georgetown Law School’s Center on Privacy and Technology. If a company uses photos from a database of celebrities, for example, it would skew toward white people because minorities are underrepresented in Hollywood.

Engineers at tech companies, which are made up of mostly white men, might also be unwittingly designing the facial recognition systems to work better at identifying certain races, Garvie said. Studies have shown that people have a harder time recognizing faces of another race and that “cross-race bias” could be spilling into artificial intelligence. Then there are challenges dealing with the lack of color contrast on darker skin, or with women using makeup to hide wrinkles or wearing their hair differently, she added.

Facial recognition systems made by Microsoft, IBM and Face++  had a harder time identifying the gender of dark-skinned women like African-Americans compared with white men, according to a study conducted by researchers at the MIT Media Lab. The gender of 35 percent of dark-skinned women was misidentified compared with 1 percent of light-skinned men such as Caucasians.

Another study by MIT, released in January, showed that Amazon’s facial recognition technology had an even harder time than tools by Microsoft or IBM identifying the gender of dark-skinned women.

The role of tech companies

Amazon disputed the results of the MIT study, and a spokeswoman pointed to a blog post that called the research “misleading.” Researchers used “facial analysis” that identifies characteristics of a face such as gender or a smile, not facial recognition that matches a person’s face to similar faces in photos or videos.

“Facial analysis and facial recognition are completely different in terms of the underlying technology and the data used to train them,” Wood said in a blog post about the MIT study. “Trying to use facial analysis to gauge the accuracy of facial recognition is ill-advised, as it’s not the intended algorithm for that‎ purpose.”

That’s not to say the tech giants aren’t thinking about racial bias.

Microsoft, which offers a facial recognition tool through Azure Cognitive Services, said last year that it reduced the error rates for identifying women and darker-skinned men by up to 20 times.


IBM made a million-face dataset to help reduce bias in facial recognition technology.

IBM Research

A spokesperson for Facebook, which uses facial recognition to tag users in photos, said that the company makes sure the data it uses is “balanced and reflect the diversity of the population of Facebook.” Google pointed to principles it published about artificial intelligence, which include a prohibition against “creating or reinforcing unfair bias.”

Aiming to advance the study of fairness and accuracy in facial recognition, IBM released a data set for researchers in January called Diversity in Faces, which looks at more than just skin tone, age and gender. The data includes 1 million images of human faces, annotated with tags such as face symmetry, nose length and forehead height.

“We have all these subjective and loose notions of what diversity means,” said John Smith, lead scientist of Diversity in Faces at IBM. “So the intention for IBM to create this data set was to dig into the science of how can we really measure the diversity of faces.”

The company, which collected the images from the photo site Flickr, faced criticism this month from some photographers, experts and activists for not informing people their images were being used to improve facial recognition technology. In response, IBM said it takes privacy seriously and users could opt out of the data set.

Amazon has said that it uses training data that reflects diversity and that it’s educating customers about best practices. In February, it released guidelines it says lawmakers should take into account as they consider regulation.

“There should be open, honest and earnest dialogue among all parties involved to ensure that the technology is applied appropriately and is continuously enhanced,” Michael Punke, Amazon’s vice president of global public policy, said in a blog post.  

Clear rules needed

Even as tech companies strive to improve the accuracy of their facial recognition technology, concerns that the tools could be used to discriminate against immigrants or minorities aren’t going away. In part that’s because people still wrestle with bias in their personal lives.

Law enforcement and government could still use the technology to identify political protestors or track immigrants, putting their freedom at risk, civil rights groups and experts argue.

2017 Los Angeles Times

US Rep. Jimmy Gomez, a California Democrat, was one of 28 US Congress members falsely matched by Amazon’s facial recognition system with mugshots of people who’ve been arrested, a study by the ACLU showed.

Al Seib/Getty Images

“A perfectly accurate system also becomes an incredibly powerful surveillance tool,” Garvie said.

Civil rights groups and tech firms are calling for the government to step in.

“The only effective way to manage the use of technology by a government is for the government proactively to manage this use itself,” Microsoft President Brad Smith wrote in a blog post in July. “And if there are concerns about how a technology will be deployed more broadly across society, the only way to regulate this broad use is for the government to do so.”

The ACLU has called on lawmakers to temporarily prohibit law enforcement from using facial recognition technology. Civil rights groups have also sent a letter to Amazon asking that it stop providing Rekognition to the government.

Some lawmakers and tech firms, such as Amazon, have asked the National Institute of Standards and Technology, which evaluates facial recognition technologies, to endorse industry standards and ethical best practices for racial bias testing of facial recognition.

For lawmakers like Gomez, the work has only begun.

“I’m not against Amazon,” he said. “But when it comes to a new technology that can have a profound impact on people’s lives — their privacy, their civil liberties — it raises a lot of questions.”